Fixed point theorems for the class Q(X, Y)
نویسندگان
چکیده
Kuratowski [6] showed that a continuous compact map f : X → X defined on a closed convex subset X of a Banach space has a fixed point. This theorem has enormous influence on fixed point theory, variational inequalities, and equilibrium problems. In 1968, Goebel [5] established the well-known coincidence theorem, and then there had been a lot of generalization and application (see, [1, 2, 5]). Let X be a subset of a Hausdorff topological vector space E and Y a Hausdorff topological vector space, we define a new class Q(X ,Y) of set-valued maps from X into Y as follows. T ∈Q(X ,Y) implies that for any compact convex subset K of X and any continuous function f : T(K) → K , the composition f (T|K ) : K → 2K has a fixed point. Subclasses of Q(X ,Y) are the class of continuous functions C(X ,Y), the class of the Kakutani maps K(X ,Y) (with convex values and codomains being convex spaces), the class of the acyclic maps V(X ,Y) (with acyclic values), and the class of the approachable maps 0(X ,Y) (whose domains and codomains are subsets of topological vector spaces), and so forth. A nonempty subset X of a Hausdorff topological vector space E is said to be nearly convex (see Wu [7]) if for every compact subset A of X and every neighborhood V of the origin 0 of E, there is a continuous mapping h : A→ X such that x− h(x) ∈ V for all x ∈ A and h(A) is contained in some convex subset of X .
منابع مشابه
Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملSuzuki-type fixed point theorems for generalized contractive mappings that characterize metric completeness
Inspired by the work of Suzuki in [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861--1869], we prove a fixed point theorem for contractive mappings that generalizes a theorem of Geraghty in [M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604--608]an...
متن کاملTwo common fixed Point theorems for compatible mappings
Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory forgeneralized $varphi$-weak contractions,Appl. Math. Lett. 22(2009) 75-78] proved a common fixed point theorem for two mapssatisfying generalized $varphi$-weak contractions. In this paper, we prove a common fixed point theorem fora family of compatible maps. In fact, a new generalization of Zhangand Song's theorem is given.
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005